a2 United States Patent

Vigneras et al.

US009298520B2

US 9,298,520 B2
Mar. 29, 2016

(10) Patent No.:
(45) Date of Patent:

(54) GENERATING A SEQUENCE OF
INSTRUCTIONS ON THE BASIS OF A
DEPENDENCY CHART GENERATED
THROUGH APPLICATION OF AT LEAST
ONE DEPENDENCY RULE

(75) Inventors: Pierre Vigneras, Angervilliers (FR);

Mare Girard, Antony (FR)

(73)

")

Assignee: BULL SAS, Les Clayes Sous Bois (FR)

Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 229 days.

1) 14/111,522

(22)

Appl. No.:

PCT Filed: Mar. 22,2012

(86) PCT No.:

§371 (D),
(2), (4) Date:

PCT/FR2012/050598

Oct. 31, 2013

(87) PCT Pub. No.: W02012/140344

PCT Pub. Date: Oct. 18,2012

Prior Publication Data

US 2014/0059564 A1l Feb. 27,2014

(65)

(30) Foreign Application Priority Data

Apr. 11,2011 (FR) 1153122

(51) Int.CL
GOGF 9/46
GOGF 9/54
GOGF 11/30
HO4L 12/24
USS. CL
CPC

(2006.01)
(2006.01)
(2006.01)
(2006.01)
(52)
.............. GOGF 9/54 (2013.01); GOGF 11/3006

(2013.01); GOGF 11/3051 (2013.01); HO4L

215

Component
list

205

a5 " Verificstions ™~

Instruction
generator

Instruction
sequence

Dependency |,____
rules
200

41/0893 (2013.01); HO4L 41/12 (2013.01);
Y04S 40/162 (2013.01); YO4S 40/164 (2013.01)

(58) Field of Classification Search
None
See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS

2006/0190768 Al 82006 Kawase
2009/0165002 Al* 6/2009 Sterbenz

OTHER PUBLICATIONS

718/102

PCT, International Search Report for International Application No.
PCT/FR2012/050598, dated Aug. 8, 2012.

Written Opinion of the International Searching Authority as issued in
International Application No. PCT/FR2012/050598, dated Oct. 15,
2013.

* cited by examiner

Primary Examiner — Wissam Rashid
(74) Attorney, Agent, or Firm — Pillsbury Winthrop Shaw
Pittman LLP

(57) ABSTRACT

The disclosure relates in particular to the processing of com-
mands targeting at least one element of a cluster including a
plurality of elements, the at least one element having a link of
dependency according to the at least one command with at
least one other element. After having identified the at least one
element and at least one dependency rule from the at least one
command, a dependency graph is generated from the at least
one identified element, by applying the at least one identified
dependency rule, the dependency graph including peaks rep-
resenting at least the element and the at least one other ele-
ment, an action linked with the at least one command being
associated with the peaks of the dependency graph. A
sequence of instructions is then generated from the depen-
dency graph.

13 Claims, 6 Drawing Sheets

220

240

*. modification .-

Instruction
executor

Execution

US 9,298,520 B2

Sheet 1 of 6

Mar. 29, 2016

U.S. Patent

00}

Gel

HpEEN

O OO0

U.S. Patent Mar. 29, 2016 Sheet 2 of 6 US 9,298,520 B2

215 220
Component Dependency | _____
list rules '
| | i
\ 4 200 i
— l
595 Chart generator :
~ i
Dependency <_____________i
230 — | chart |
l 235 i
/,»’/Verification/\‘fg__ _____________ J
.. modification .- '
o Instruction
205 generator |
\ 240
Instruction /
sequence :
045 _~"Verification/ ™, ;

\\modification

~

210

Instruction
executor

Execution

U.S. Patent Mar. 29, 2016 Sheet 3 of 6 US 9,298,520 B2

305-1 305-2
c1 320
v
cdO _]
nfs1 2% > nfs2 152
310
Fig. 3
Create initial f500
ColddoorOff dependency chart
: . v f505
nodeOff F|g 5 Select component
A 510
. Identify dependent L
nfsDown components
\ 515~ |
unmountNFS Modify dependency
: chart (nodes/links
Fig. 4 ‘)

Fig. 6a nfst#nfsd@soft | |cdO#colddoor@hw| | nfs2#nfs@node

U.S. Patent Mar. 29, 2016 Sheet 4 of 6 US 9,298,520 B2
nfs1#nfsd@soft cdO#colddoor@hw nfs2#nfs@node
F|g 6b nfs1#nfs@node c 1#compute@node
nfs1#nfsd@soft cdO#colddoor@hw nfs2#nfs@node
Flg 6¢c nfs1#nfs@node c1#compute@node
[nodectrl poweroff c1]
nfs 1#nfsd@soft cdo#colddoor@hw nfs2#nfs@node
[ssh nfs1 /etc/init.d/nfs stop] / \
nfs1#nfs@node cT#compute@node
[nodectrl poweroff nfs1]| | [nodectrl poweroff ¢1]
Fig. 6d
A 4

nfs2#unmountNFS@soft
[warning: nfs mounted!]

c1#unmountNFS@soft
[warning: nfs mounted!]

U.S. Patent

Mar. 29, 2016

Sheet 5 of 6

US 9,298,520 B2

nfs 1#nfsd@soft

[ssh nfs1 /etc/init.d/nfs stop]

cdO#colddoor@hw

[bsm_power —a off_force cd0]

nfs2#nfs@node

NN

nfs1#nfs@node
[nodectr poweroff nfs1]

c1#compute@node
[nodectrl poweroff c1]

Fig. 6e

v

nfs2#nfsd@soft
A 4
nfs2#unmountNF S@soft c1#unmountNF S@soft
[warning: nfs mounted!] [warning: nfs mounted!]
nfs1#nfsd@soft cdO#colddoor@hw nfs2#nfs@node

[ssh nfs1 /etc/init.d/nfs stop]

[bsm_power —a off_force cd0]

[nodectr poweroff nfs2]

N

nfs1#nfs@node
[nodectrl poweroff nfs1]

c1#compute@node
[nodectrl poweroff c1]

Fig. 6f

A 4

nfs2#unmountNFS@soft
[warning: nfs mounted!]

A

nfs2#nfsd@soft
[ssh nfs2 /etc/init.d/nfs stop]

N

cT#unmountNFS@soft
[warning: nfs mounted!]

nfs1#unmountNFS@soft
[warning: nfs mounted!]

U.S. Patent Mar. 29, 2016 Sheet 6 of 6 US 9,298,520 B2

ROM
700
704 /] (prog.) —/
Ve 706
CPU
703 ’f
RAM .
Fig. 7
208 4| Screen
{Keyboard, mouse Communication|_ >
710 A interface [
A Hard disk N
712 A 702 718
Card d f
ard reader
714 ’f T

Card ve e

US 9,298,520 B2

1

GENERATING A SEQUENCE OF
INSTRUCTIONS ON THE BASIS OF A
DEPENDENCY CHART GENERATED

THROUGH APPLICATION OF AT LEAST
ONE DEPENDENCY RULE

RELATED APPLICATIONS

This application is a U.S. National Phase under 35 U.S.C.
§371 of International Application No. PCT/FR2012/050598,
which designated the U.S., filed Mar. 22, 2012 and which
claims priority under 35 U.S.C. §119 to France Patent Appli-
cation No. FR20110053122, filed Nov. 4, 2012. The disclo-
sures of the above-described applications are hereby
expressly incorporated by reference in their entireties.

BACKGROUND

1. Field

The present disclosure concerns the administration of com-
plex computer systems and more particularly a method and a
device for processing administration commands in a cluster.

2. Description of the Related Art

HPC (standing for High Performance Computing) is being
developed for university research and industry alike, in par-
ticular in technical fields such as aeronautics, energy, clima-
tology and life sciences. Modeling and simulation make it
possible in particular to reduce development costs and to
accelerate the placing on the market of innovative products
that are more reliable and consume less energy. For research
workers, high performance computing has become an indis-
pensable means of investigation.

This computing is generally conducted on data processing
systems called clusters. A cluster typically comprises a set of
interconnected nodes. Certain nodes are used to perform
computing tasks (compute nodes), others to store data (stor-
age nodes) and one or more others manage the cluster (admin-
istration nodes). Each node is for example a server imple-
menting an operating system such as Linux (Linux is a
trademark). The connection between the nodes is, for
example, made using Ethernet or Infiniband communication
links (e.g., Ethernet and Infiniband are trademarks). Each
node generally comprises one or more microprocessors, local
memories and a communication interface.

FIG. 1 is a diagrammatic illustration of an example of a
topology 100 for a cluster, of fat-tree type. The latter com-
prises a set of nodes of general reference 105. The nodes
belonging to the set 110 are compute nodes here whereas the
nodes of the set 115 are service nodes (storage nodes and
administration nodes). The compute nodes may be grouped
together in sub-sets 120 referred to herein as “compute islets,”
the set 115 being referred to herein as a service islet.

The nodes are linked together by switches, for example
hierarchically. In the exemplary embodiment illustrated in
FIG. 1, the nodes are connected to first level switches 125
which are themselves linked to second level switches 130
which in turn are linked to third level switches 135.

The nodes of a cluster as well as the other components such
as the switches are often grouped together in racks, which
may themselves be grouped together into islets. Furthermore,
to ensure proper operation of the components contained in a
rack, the rack generally comprises a cooling system, for
example a cooling door (often called a cold door).

The management of a cluster, in particular the starting,
stopping or the software update of components in the cluster,
is typically carried out from administration nodes using pre-
determined processes or directly by an operator. Certain

20

25

40

45

55

2

operations such as starting and stopping of the whole of the
cluster, islets or racks, may also be carried out manually, by
node or by rack.

It has been observed that although the problems linked to
the management of clusters do not generally have a direct
influence on the performance of a cluster, they may be critical.
Thus, for example, if a cooling problem for a room housing
racks is detected, it is often necessary to rapidly stop the
cluster at least partially to avoid overheating of components
which could in particular lead to the deterioration of hardware
and/or data loss.

There is thus a need to improve the management of clus-
ters, in particular to process administration commands.

SUMMARY

The disclosure enables at least one of the problems set forth
above to be solved.

The disclosure thus relates to a computer method for pro-
cessing at least one command concerning at least one com-
ponent of a cluster, the cluster comprising a plurality of com-
ponents, the atleast one component having a dependency link
according to the at least one command with at least one other
component of the plurality of components, the method com-
prising,

identifying the at least one component of the plurality of

components;

identifying at least one dependency rule on the basis of the

at least one command;
generating a dependency chart on the basis of the at least
one identified component, through application of the at
least one dependency rule identified, the dependency
chart comprising vertices representing at least one the
component and the at least one other component, an
action linked to the at least one command being associ-
ated with the vertices of the dependency chart; and,

generating a sequence of instructions on the basis of the
dependency chart.

The method according to the disclosure thus makes it pos-
sible to generate, from a command and identifiers of compo-
nents of a cluster, a sequence of instructions satisfying con-
straints relating to actions concerning components of that
cluster. The method according to the disclosure enables com-
mands to be processed in a heterogeneous cluster, capable of
modification, facilitating the administration of the cluster, in
particular by reducing the number and the names of com-
mands.

Advantageously, an identification function for identifying
components and a dependency rule are associated with the at
least one identified dependency rule, the method further com-
prising identifying at least the other component from the
identification function, the dependency chart being generated
from the at least one identified component, from the at least
one other component, from the at least one identified depen-
dency rule and from the dependency rule associated with the
at least one identified dependency rule. The method accord-
ing to the disclosure thus enables the set of components
involved in the execution of the processed command to be
determined recursively, according to different levels of
granularity of the components (hardware or software).

According to an embodiment, the method further com-
prises displaying information relative to the dependency
chart, and generating the sequence of instructions being car-
ried out in response to a validation of the information dis-
played relative to the dependency chart. Thus, in accordance
with the method, a user can view the dependency chart in

US 9,298,520 B2

3

order, in particular, to validate it, modify it or modify the
dependency rules to regenerate, if required, a new depen-
dency chart.

Still according to an embodiment, generating a depen-
dency chart is recursive and comprises:

creating an initial dependency chart comprising at least the

at least one component;

selecting a component in the dependency chart

identifying at least one component on which the selected

component is dependent in view of a dependency rule;
and,

modifying the dependency chart according to the selected

component and the at least one identified component on
which the selected component is dependent in view of a
dependency rule.

The method according to an embodiment thus makes it
possible to simply and effectively construct a dependency
chart from which can be generated a sequence of instructions
satisfying constraints relating to actions concerning compo-
nents of that cluster for processing a command.

Advantageously, the step of selecting a component in the
dependency chart is based on a rule chart, the rule chart being
an ordered representation of the at least one identified depen-
dency rule and dependency rules directly or indirectly asso-
ciated with the at least one identified dependency rule.

The method according to an embodiment thus makes it
possible to simply and efficiently find an order for executing
actions on components of a cluster according to predeter-
mined constraints.

According to an embodiment, the step of generating a
sequence of instructions comprises generating at least one
group of instructions for each level of the dependency chart.
The method thus enables intelligent management of faults to
avoid the loss of data and harm to equipment while executing
to the greatest extent possible the instructions defined accord-
ing to the command concerned.

Still according to an embodiment, the sequence of instruc-
tions is generated in the form of a file of XML type, a level tag
being associated with each level of the dependency chart and
a group tag being associated with each group of instructions
for each tag of level corresponding to a level for which there
are at least two distinct groups of instructions. The method
thus provides easy reading of the sequences of instructions
linked to a command which may thus be verified and/or
modified simply while limiting the risks of errors for a user.

Still according to an embodiment, the method further com-
prises executing the sequence of instructions.

Still according to an embodiment, the method further com-
prises displaying information relative to the sequence of
instructions, the step of executing the sequence of instruc-
tions being carried out in response to a validation of the
information displayed relative to the sequence of instructions.
Thus, in accordance with the method, a user may view the
sequence of instructions in order, in particular, to validate it,
modify it or modify dependency rules or the dependency
chart that is used to regenerate, if required, a new sequence of
instructions.

Advantageously, instructions relative to two distinct levels
of the dependency chart are executed sequentially and
according to which chart, instructions of distinct groups of
instructions of the same level of the dependency chart are
executed in parallel. The method furthermore makes it pos-
sible to perform actions in parallel concerning several sets of
components in order, in certain embodiments, to optimize the
execution time of a command.

An embodiment of the disclosure is also directed to a
computer program comprising instructions adapted to the

15

20

25

40

45

65

4

implementation of each of the steps of the method described
earlier when the program is executed on a computer as well as
to a device comprising means adapted to the implementation
of each of the steps of the method described earlier. The
advantages procured by that computer program and that
device are similar to those referred to above.

BRIEF DESCRIPTION OF THE DRAWINGS

Other advantages and features of the present disclosure
will emerge from the following detailed description, given by
way of non-limiting example, relative to the accompanying
drawings in which:

FIG. 1 is a diagram illustrating an example of topology for
a cluster.

FIG. 2 is a diagram illustrating an example of implemen-
tation of certain phases of the method according to the dis-
closure.

FIG. 3 is a diagram representing an example of dependency
relationships between components of a cluster.

FIG. 4 is a diagram illustrating a rule chart example.

FIG. 5 is a flowchart illustrating certain steps of an example
of'a recursive algorithm used to generate a dependency chart
in accordance with the disclosure.

FIG. 6, comprising FIGS. 6a to 6f, are diagrams illustrating
the implementation of the algorithm described with reference
to FIG. 5 according to the example described with reference
to FIGS. 3 and 4.

FIG. 7 is a block diagram illustrating an example of a
device adapted to implement the disclosure or part of the
disclosure.

DETAILED DESCRIPTION OF CERTAIN
INVENTIVE EMBODIMENTS

The disclosure in particular relates to the generation of
sequences of instructions enabling the execution of adminis-
tration commands for clusters. Such commands are, for
example, the stopping or the starting of a cluster or of part of
a cluster such as racks or islets (set of racks). The disclosure
makes it possible to limit the execution time of these com-
mands and facilitate the maintenance of clusters, while taking
into account the specificities of each item of equipment.

The method according to an embodiment comprises three
phases, generating a dependency chart, generating a sequence
of instructions and executing that sequence of instructions. A
dependency chart may be obtained here on the basis of depen-
dency rules, a list of components of the cluster to which the
administration command is to be applied, and also on the
basis of the configuration of those components. This chart
may, for example, indicate that a cold door of a given rack can
only be stopped after the servers contained in that rack have
been stopped.

The sequence of instructions generated is in accordance
with the dependency constraints expressed in the dependency
chart. Thus, by way of illustration, that sequence may indicate
that certain nodes may be stopped in parallel whereas certain
nodes and a certain cold door must be stopped sequentially. It
is advantageously optimized according to the instructions
that may be executed in parallel. Lastly, the execution of that
sequence of instructions may take errors into account. Thus,
for example, if a server has not been correctly stopped in
software terms, the Power Distribution Unit (or PDU) upon
which it depends should not be turned off.

FIG. 2 represents an exemplary implementation of those
three phases, implemented in a dependency chart generator
200, an instruction generator 205 and an instruction executor
210, respectively.

US 9,298,520 B2

5

The dependency chart generator 200 here relies on the use
of a list of components, referenced 215, dependency rules
referenced 220, and data 225 characterizing the components
and the links joining them together. It enables a dependency
chart 230 to be obtained from which may be generated
sequences of instructions.

In an embodiment, the dependency chart is advantageously
obtained using, in particular, a rule chart, characterizing the
dependency links between the rules of the same set of depen-
dency rules, which makes it possible to identify the roots that
may be used to determine an order of application of actions to
components, as described below.

The dependency chart 230 may be verified by a user (step
235) who may validate it, modify it or modify or add depen-
dency rules to re-generate a new dependency chart.

The dependency chart 230 may be used by the instructions
generator 205 to generate a sequence of instructions 240
making it possible to carry out the administration command
concerning the components determined according to depen-
dency rules identified according to that command.

The sequence of instructions 240 may be verified by a user
(step 245) who may validate it, modify it, modify the depen-
dency chart 230 or modify or add dependency rules to regen-
erate a new dependency chart and re-generate a new sequence
of instructions.

The sequence of instructions 240 may then be executed by
the instructions generator 210. A sequence of instructions
may be generated when an administration command concern-
ing a set of determined components must be executed or
generated in anticipation to enable its execution when a com-
mand concerning a set of specific components must be
executed without it being necessary to generate the corre-
sponding sequence of instructions (the sequence of instruc-
tions may thus be executed immediately).

It is observed here that if the algorithm described with
reference to FIG. 2 enables a user to verify each phase, the
phases of dependency chart generation, generating sequences
of instructions and executing those sequences may be
executed one after the other, in a way which is transparent for
the user.

The list of components 215 identifies the set of components
processed by an administration command. By way of illus-
tration, this list may be expressed by a set of expressions of
the following form:

componentNamePrefix[a-b, c-d, . . . | #type @ category

where
componentNamePrefix[a-b, c-d, . . .] is a contracted stan-
dard notation to designate a set of component names
having the prefix componentNamePrefix and a suffix
equal to a value taken in the ranges [a-b], [c-d], etc.;

type is a description of the component considered. Thus,
for example, if the component considered is a node, the
type may be equal to compute to indicate that it is a
compute node. These types of components are described
in more detail below; and
category is the category of the component considered rela-
tive to the categories defined in a database defining the
components of a cluster (generally called cluster data-
base or clusterDB). By way of illustration, the categories
defined in the clusterDB used are for example the fol-
lowing,
hwmanager or hw (this category designates controllers of
hardware components, in particular of BMC type (BMC
standing for Baseboard Management Controller);

disk-array or da (this category typically designates storage
bays);

10

25

30

35

40

45

50

55

60

65

6

switch (this category typically designates switches, for
example switches of Ethernet, Infiniband or PDU type);

node (this category typically designates nodes, for example
compute, input/output or administration nodes);

hw_group and rack (these categories designate sets of
hardware components); and,

soft (this category designates all the software components
of the cluster, for example a server of nfs type, nfs
standing for Network File System).

The components of another embodiment of the cluster may

be defined differently, as required.

In an embodiment, it may be observed that if the
type@category part is missing, it may generally be recovered,
for example from the clusterDB, an error being generated if
the component considered is not recovered. However, to
avoid frequently interrogating the clusterDB, which may be
detrimental in terms of processing time, it is preferable to
specify that parameter in the list of the components.

An example of a list of components is given in Appendix
Al. According to that example, the first expression concerns
components named Calcul_1, Calcul_2 and Calcul_3, corre-
sponding to islets (islet) and defined in the clusterDB by the
category hw_group. Similarly, the fourth expression con-
cerns a set of nine nodes named bullx12 to bullx20 which are
here compute nodes (#compute@node).

Inan embodiment, the dependency rules 220 are the depen-
dency rules to be applied to the components concerned by the
list of components 215. They enable actions to be associated
with components of a cluster and to identify dependencies
between components of a cluster according to the required
actions. The dependency rules 220, identified by the same
name or the same administration command identifier, form a
RuleSet, that is to say a set of rules potentially to be applied
(according to the components concerned) to execute a called
administration command.

It is observed here that if an administration command
directly concerns a set of dependency rules, it may also indi-
rectly concern other dependency rules which are themselves
linked directly or indirectly to the dependency rules directly
concerned by the administration command.

An exemplary embodiment of dependency rules is illus-
trated in Appendix A2. These dependency rules may be rep-
resented here in the form of a table in which each row corre-
sponds to a dependency rule. As indicated earlier, an
administration command here corresponds to an initial selec-
tion of dependency rules. Thus, for example, the administra-
tion command called “stop” uses several dependency rules
capable of applying to components of different types.

The columns of that table are defined here in the following
way:

RuleSet: name of the administration command calling the
dependency rule which is the subject of the row consid-
ered;

Symbolic name: unique symbolic name of the dependency
rule which is the subject of the row considered;

Comp. type: type of the component to which applies the
dependency rule. The syntax used here is similar to that
described above, in the form type@category. Several
types of components may be concerned by a dependency
rule. In such case, those types are separated by a logical
symbol, for example “OR” or “|”. Certain expressions
such as “all” may be used to designate several types
without it being necessary to define them one by one.
The categories are, for example, those defined earlier
(hwmanager or hw, disk-array, switch, node, hw_group,
rack and soft), the types of components may be, for
example, the following,

US 9,298,520 B2

7

compute, login, io and mngt to characterize a function such
that, for example, compute@node designates a compute
node, login@node designates a connection node,
io@node designates an input/output node and
mngt@node designates an administration node;

all designates all the types of a given category, for example
all@disk_array designates all the storage bays;

colddoor concerns the cold doors. As a cold door is a
hardware component, it is designated by
colddoor@hwmanager;

eth, ib and pdu concern types of switches for example such
as eth@switch which designates an Ethernet switch,
ib@switch which designates an Infiniband switch and
pdu@switch which designates a PDU switch; and

nfsd, sshd and lustre designate software components for
example such as nfsd@soft which designates an NFS
daemon, sshd@soft which designates an SSH server and
lustre@soft which designates a lustre daemon (lustre is
a trademark here designating a distributed file system).

Filter: a filter having an expression in the form “%
var=~regexp” or “% var!~regexp”, used to select the
components to which the action linked to the depen-
dency rule is to be applied (the application of a filter is
described below);

Action: an action to be executed for the selected compo-
nents (the expression “% comp.” is replaced by the name
of the component considered). As described below,
according to the value of the return code for the action,
after its execution, the generator of the dependency chart
may, according to the chosen execution mode, indicate
an error and stop or continue the execution of instruc-
tions;

DepsFinder: name of a script to call which, for the given
components (defined by Comp. type and Filter), returns
a list of pairs (x, t) where x represents the name of a
component which may be processed, typically stopped
or started, before the given components or the compo-
nents corresponding to the given type of components
and in which t represents the type of that component.
This type may be one of the types described above. A
particular expression, “none”, may be used when there is
no dependency. This particular expression indicates that
the component or components considered do not depend
on other components (for the processing of the admin-
istration command concerned);

DependsOn: is a list of symbolic names of dependency
rules (included in the Symbolic name column) making
references to other components or component types
identified by the field DepsFinder. A particular expres-
sion, “none”, is used when there is no dependency. This
expression is ignored if the expression “DepsFinder” is
“none”. The dependency rules concerned here belong to
the set of dependency rules concerned by the adminis-
tration command considered; and,

Comments: comments without incidence on the depen-
dency rule.

It is observed here that the set of the dependency rules may,
for example be stored in the clusterDB.

As indicated earlier, the application of a dependency rule
may comprise filtering with a filter that may, for example, be
expressed in the form “% var=~regexp” or “% var !~regexp”
where % var is replaced by its value during the evaluation of
the expression (for example % id, % ruleset and % comp.), the
operator=~indicates that the component (% comp.) is only
filtered if the expression is verified whereas the operator !~
indicates that the component is only filtered if the expression
is not verified.i If the expression does not begin with a known

10

15

20

25

30

35

40

45

50

55

60

65

8

variable “% var”, the expression is interpreted as a command
of'shell type which, when called, specifies whether the given
component may be kept (return code equal to zero) or rejected
(return code different from zero). Two particular expressions
“all” and “null” are reserved to accept all the components and
to reject them, respectively. By way of illustration, to accept
all the components of which the name contains “bullx104”,
the expression “% name=~bullx104” may be used.

By way of illustration, the second dependency rule given in
Appendix A2, called “nodeOn”, concerns a command
(RuleSet) for starting (start) for components of compute node
type (compute@node). In an embodiment, a filter is used to
select only the compute nodes not containing the name com-
putel2 (% name !~computel2). The dependency rule
nodeOn uses the function nodectr] with the parameters pow-
eron and % comp. the object of which is to start the selected
compute nodes. The dependency rule nodeOn uses the script
find_nodeon_deps to identify nodes must be processed (here
started) before each compute node considered. Furthermore,
it may be specified that the execution of the dependency rule
nodeon depends on the execution of the dependency rule
ColddoorStart concerning the starting of a cold door. In other
words, a selected compute node can only be started if the cold
door of the rack in which it is located has been started before-
hand. The dependency rule ColddoorStart applies to the com-
ponents yielded by the script DepsFinder corresponding to
the dependency rule nodeOn.

Similarly, the third dependency rule given in Appendix A2,
called “colddoorOff”’; concerns a command (RuleSet) for
stopping (stop) for hardware components of cold door type
(colddoor@hw). No filter is used here. Consequently, all the
cold doors are concerned by this dependency rule. The latter
uses the function bsm_power with the parameters off %
comp. the object of which is to stop a cold door. The depen-
dency rule colddoorOff uses the script find_colddoorOff_dep
to identify all the nodes which are to be processed (here
stopped) before the cold door considered. Furthermore, it is
specified that the execution of the dependency rule cold-
doorOff depends on the dependency rule nodeOff concerning
the stopping of nodes. In other words, a cold door can only be
stopped if the nodes linked to the cold door have been stopped
in advance. However, if a node cannot be stopped, it is nev-
ertheless possible to stop the cold doors of the racks not
including any node.

In an embodiment, when a command (RuleSet) is called to
process a set of components, all the dependency rules corre-
sponding to that command are selected as well as, where
appropriate, the dependency rules linked on account of the
dependencies, directly or indirectly, to those initially selected
rules. Among these selected rules, some, linked to compo-
nents of the list of components, are implemented and others,
linked directly or indirectly to implementation rules, are also
implemented. Certain selected rules may thus not be imple-
mented.

Thus, according to the example given in Appendix A2, if
the command start is called, all the dependency rules corre-
sponding to that command, including the dependency rule
nodeOn, are selected. It is observed that among these selected
rules, the dependency rule ColddoorStart (not represented) is
implemented if the dependency rule nodeOn is implemented
on account of the dependency.

After having identified an initial set of components (list of
components) a set of dependency rules and a set of compo-
nents that may influence the components of the initial set of
components, it is possible to generate a rule chart which may
be used for generating a dependency chart. Such a step is
carried out here in the chart generator.

US 9,298,520 B2

9

The rule chart is created from all the dependency rules
identified and implemented, according to the dependency
relationships identified here in the field DependsOn.

The rule chart makes it possible, by iteration, to construct
a dependency chart between all the identified components.

In an embodiment, a cluster (particularly simplified) is
considered here comprising several components linked to
each other by dependency relationships some of which are
illustrated in FIG. 3. The cluster 300 comprises two racks
305-1 and 305-2. The rack 305-1, cooled by a cold door 310
(called ¢d0), comprises a server 315-1 of NFS type (called
nfs1) and a compute node 320 (called cl1) whereas the rack
305-2 comprises a server 315-2 of NFS type (called nfs2). It
is assumed that the server nfs1 is a client of the server nfs2,
that, reciprocally, the server nfs2 is a client of the server nfs1
and that the compute node c1 is a client of the servers nfs1 and
nfs2.

The object here is to stop (administration command stop)
the NFS daemon of the server nfsl (component
nfs1#nfsd@soft in the list of components concerned by the
administration command considered), to turn off the cold
door ¢d0 (component cdO#colddoor@hw in the list of com-
ponents concerned by the administration command consid-
ered), and stop the server nfs2 (component nfs2#nfs@node in
the list of components concerned by the administration com-
mand considered).

The constraints are to turn off the compute node c1 (node-
Off) before the cold door ¢dO (colddoorOfY), to stop the NFS
daemons (nfsDown) on the servers nfs1 and nfs2, to display a
warning (unmountNFS) for each client of the NFS servers (in
order to warn of the stopping of the NFS servers) and to stop
the server nfs2 (nodeOff). These constraints may be
expressed in rule chart form as illustrated in FIG. 4. As indi-
cated earlier, the order of the dependency rules may be deter-
mined according to the indications associated with each of
them, for example the indications of the field DependsOn
described earlier.

FIG. 5 illustrates certain steps of an example of a recursive
algorithm used to generate a dependency chart in accordance
with the disclosure. A first step (step 500) is directed to
creating an initial dependency chart. The latter may com-
prises all the components of the list of components (refer-
enced 215 in FIG. 2) concerned by the administration com-
mand considered.

A following step (step 505) consists of selecting a compo-
nent in the dependency chart in course of construction. In an
embodiment, the component selected is chosen on the basis of
the rule chart, as being the first component of a root of the rule
chart (in which roots may possibly have been deleted virtually
during the construction of the dependency chart). If no com-
ponent corresponds to a root of the rule chart, those roots are
deleted (virtually) and the step is repeated with the resulting
rule chart.

The components dependent on the selected component are
then identified (step 510). As described above, these compo-
nents may be identified using dependency rules which are
associated with them and scripts of the field DepsFinder.

These components are added to the dependency chart in
course of construction then dependency links between the
components of the dependency chart are added (step 515).
The added components are in turn processed (according to the
dependency rules defined in the field DependOn which is
associated with the field DepsFinder that led to the identifi-
cation of those components) to determine whether they
depend on other components. Step 515 is thus executed recur-
sively. If a component does not depend on other components,
the action associated with it (defined in the field action of the

25

40

45

55

10

dependency rule) is stored in memory and the following com-
ponent (going up in the hierarchy of the dependency chart) is
processed to determine whether all the components on which
it depends have been processed and, the case arising, to store
the associated action in memory.

When all the components identified and added to the
dependency chart have been processed, another component
of the dependency chart, not yet processed, is, the case aris-
ing, selected (step 505). As indicated previously, if no com-
ponent is associated with a root of the rule chart, those roots
are deleted (virtually) and the step is repeated with the result-
ing rule chart.

The algorithm terminates when all the components associ-
ated with the rule chart (and the components which depend
thereon) have been processed.

Thus, a dependency chart may be created here from the
components present in the list of components by adding
dependent components on the basis of dependency rules, by
adding dependency links and by modifying the nodes of the
chart to add actions according to the dependency rules con-
cerned. In other words, when a component is processed via a
dependency rule, the script DepsFinder is called. The com-
ponents determined by that script, upon which an action must
be performed before performing the action concerning the
processed component, not appearing in the dependency chart,
are added to it. All the components to be processed (compo-
nents of the list of components and components upon which
those components depend) form a set of components to pro-
cess. When a component is processed, it is removed from that
set. The process of generating the dependency chart termi-
nates when that set is empty.

The algorithm described with reference to FIG. 5 is now
illustrated, with reference to FIGS. 6a to 6f'according to the
example illustrated in FIGS. 3 and 4.

In an embodiment, the first step of the algorithm for con-
structing the dependency chart consists of creating a chart
comprising the components specified in the list of compo-
nents to which must be applied the administration command
concerned, that is to say, according to the example described
with reference to FIG. 3, the daemon nfs1 (nfs1#nfsd@soft),
the cold door c¢d0 (cd0#colddoor@hw) and the server nfs2
(nfs2-nfs@node), as represented in FIG. 6a.

As represented in FIG. 4, the rule chart linked to that
example only comprises one root concerning the rule for
stopping a cold door (colddoorOff). This rule is associated
here with the cold door ¢d0. This component is thus selected
as first component in accordance with step 505.

The script DepsFinder linked to the stopping of the cold
door ¢d0 makes it possible to identify the compute server cl
(cl#compute@node) as well as the server nfsl
(nfs1#nfs@node). These components are then added to the
dependency chart with the corresponding dependency links,
as illustrated in FIG. 6b.

In an embodiment, the node c¢1 is then selected as well as
the dependency rule nodeOff (linked to the rule for stopping
the cold door cd0). The corresponding script DepsFinder
returns nothing (the stopping of the node does not depend
here on another component). The action of the rule associated
with node cl is stored (as illustrated in FIG. 6¢). This action
concerns a function for controlling a node (nodectrl) having
as parameters poweroff in order to specify the type of control
to perform (stopping a node) and cl to identify the node
concerned by the action.

In similar manner, node nfsl is processed. Again, the
dependency rule nodeOff (linked to the rule for stopping the
cold door c¢d0) applies here. The corresponding script Deps-
Finder identifies the associated NFS daemon

US 9,298,520 B2

11

(nfs1#nfsd@soft). This component is then added to the
dependency chart with the corresponding dependency link
(as illustrated in FIG. 6c¢).

In recursive manner, the component nfsl#nfsd@soft is
processed. Two new components (NFS clients linked to the
nodes ¢l and nfs2) are then created (c1#unmountNFS@soft
and nfs2#unmountNFS@soft) in the dependency chart with
the corresponding dependency links. As these new compo-
nents have no dependency, the associated actions are stored in
memory, then those of the component nfsl#nfsd@soft and
lastly those of the component nfs1#nfs@node, as illustrated
in FIG. 6d.

In a following iteration, the action associated with the cold
door is stored.

In the list of exemplary components, comprising the dae-
mon nisi (nfsl#nfsd@soft), the cold door c¢dO
(cdO#colddoor@hw) and the server nfs2 (nfs2#nfs@node),
only the cold door cd0 has been processed. However, when
processing the cold door c¢d0, the daemon nfs1 was processed
incidentally. Consequently, only the server nfs2
(nfs2#nfs@node) remains to be processed. Again, the first
component associated with a root of the rule chart (repre-
sented in FIG. 4) is sought. As no component is associated
with the root ColddoorOff (the cold door cd0 has already been
processed and there is no other component), that root is
removed (virtually) from the rule chart. In the resulting rule
chart, it is the rule nodeOff which is the root. The server nfs2,
corresponding to the rule nodeOff, is thus selected.

The script DepsFinder associated with the server nfs2
according to the rule nodeOft makes it possible to identify the
daemon nfs2 (nfs2@nfsd@soft). This component is thus
added to the dependency chart with the corresponding depen-
dency link, as illustrated in FIG. 6e.

The daemon nfs2 is then selected to determine its depen-
dencies, here cl#unmountNFS@soft and
nfs 1#unmountNFS@soft. As the component
cl#unmountNFS@soft has already been added to the depen-
dency chart, only the component nfs 1#unmountNFS@soft is
added to that chart, a dependency link being added to each of
those components. In recursive manner, it is determined that
those components have no dependency. The actions associ-
ated with those components are then stored.

In an embodiment, the same action cannot be stored twice
for the same node. However, different actions, coming from
different dependency rules, may be associated with the same
node of the dependency chart. In other words, a given depen-
dency rule can only be applied once to a given component
whereas several distinct dependency rules may be applied to
the same component which may lead to the association of
several actions with the same node of the dependency chart.

By moving up in the structure of the dependency chart, it
may then possible to associate the actions with the compo-
nents dependent on the components processed previously as
illustrated in FIG. 6f'which represents the dependency chart
on the basis of which a sequence of instructions may be
generated.

It is observed here that, if'a cycle is observed in the depen-
dency chart, the process may be terminated and the problem
may be indicated to the user.

Several algorithms may be used to generate a sequence of
instructions on the basis of a dependency chart. However,
whatever the algorithm used, a sequence of instructions is
advantageously represented in the form of a file of XML type
(XML standing for eXtensible Markup Language), to be eas-
ily readable and modifiable by a user.

According to a first embodiment, a sequence of instruc-
tions is obtained on the basis of a dependency chart using a

20

35

40

45

50

55

60

65

12

standard topological sorting algorithm. The sequence of
instructions obtained corresponds to a trivial path through the
chart, ensuring the constraints are complied with. However,
although such an algorithm may be easy to implement and
complies with the determined constraints, it does not enable
parallel execution of certain instructions. Furthermore, if an
instruction cannot be executed (for example further to an
execution error), it is possible, according to the execution
mode chosen, for the following instructions not to be
executed, even if they do not depend on the instruction that
cannot be executed.

According to another embodiment, the instructions are
organized in such a manner as to be executed in parallel. The
instructions the execution of which depends on the execution
of other instructions are placed on standby until the execution
of the latter. As soon as an instruction or a set of instructions
is executed, those dependent thereon are executed. Such an
embodiment gives good performance. However, the repre-
sentation of the sequences of instructions so generated is
difficult to understand, and therefore to modify, for a user.

Another embodiment is directed to combining the parallel
and sequential approaches described earlier, that is to say, for
example, to execute instructions in parallel by level. For such
purposes, the vertices of the dependency chart representing
leaves are identified. In the example described with reference
to FIG. 6, these vertices correspond to the following compo-
nents,

cl#unmountNFS@soft [warning: nfs mounted!];

nfs1#unmountNFS@soft [warning: nfs mounted!];

nfs2#unmountNFS@soft [warning: nfs mounted!]; and,
cl#compute@node [nodectr]l poweroff c1].

The instructions associated with those vertices then form a
first set of instructions which may be executed in parallel, per
group (each group corresponding to a vertex).

The vertices so identified are then removed (virtually) from
the dependency chart and the vertices of the resulting depen-
dency chart representing leaves are identified. In the example
considered, these vertices correspond to the following com-
ponents,

nfs1#nfsd@soft [ssh nfs1/etc/init.d/nfs step]; and

nfs2#nfsd@soft [ssh nfs2/etc/init.d/nfs step].

The instructions associated with those vertices then form a
second set of instructions which may be executed in parallel,
per group (each group corresponding to a vertex), after the
first set of instructions has been executed.

Again, the vertices identified are removed (virtually) from
the dependency chart and the vertices of the resulting depen-
dency chart representing leaves are identified. In the example
considered, these vertices correspond to the following com-
ponents,

nfs1#nfs@node [nodectr]l poweroff nfs1]; and,

nfs2#nfs@node [nodectr]l poweroff nfs2].

The instructions associated with those vertices may then
form a third set of instructions which may be executed in
parallel, per group (each group corresponding to a vertex),
after the first and second sets of instructions have been
executed.

Again, the vertices identified are removed (virtually) from
the dependency chart and the vertices of the resulting depen-
dency chart representing leaves are identified. The instruc-
tions associated with the sole remaining vertex
(cdO#colddoor@hw [bsm_power—a off_force cd0]) then
form a fourth set of instructions which may be executed in
parallel, after the first, second and third sets of instructions
have been executed.

Appendix A3 illustrates an example of an XML file corre-
sponding to such an embodiment. The tag <seq> indicates a

US 9,298,520 B2

13

section of groups of instructions to be processed sequentially
whereas the tag <par> indicates sections of groups of instruc-
tions to be processed in parallel. Thus, for example, the group
of instructions comprising the identifiers 1, 2, 3 and 4 must be

processed before the group of instructions comprising the 3

identifiers 5 and 6 whereas the instructions linked to the
identifiers 1, 2, 3 and 4 are advantageously processed in
parallel.

Such a representation is easy to understand for a user who

may thus modify it in order to adapt it if required. 10

In an embodiment, a sequence of instructions so generated
may then be executed. Advantageously, the actions concerned
by the instructions are unitary (each instruction only concerns
one component) and atomic (obtaining an indication of the

result of executing the instruction) in order to verify the 15

execution of the sequence of instructions.

Atomicity may in particular be obtained by receiving a
notification of instruction execution of OK type if the instruc-
tion was correctly executed, NOK if the instruction was not

correctly executed or WARNING if the execution of the ,,

instruction may lead to a perturbation of components of the
cluster (for example the stopping of an NFS server when a
node is a client of that server). In the case of a WARNING, the
execution of an instruction linked to a component dependent
on the execution of that instruction having produced a
WARNING may be submitted for acceptance by a user or
forced by the system to have a selected mode of execution (for
example forced or not).

It is thus possible to manage failures in order, for example,
notto stop a cold door not all the nodes have been stopped (for

example if a node refuses to stop). 30

A device adapted to implement the disclosure or a part of
the disclosure, in particular the algorithms described with
reference to FIGS. 2 and 5, is illustrated in FIG. 7. The device
700 is for example a computer of PC type (PC standing for

Personal Computer). 35

The device 700 here comprises a communication bus 702
to which there are connected:

a central processing unit or microprocessor 703 (or
CPU, standing for Central Processing Unit);

aread only memory 704 (ROM, acronym for Read Only
Memory) able to contain the programs “frog™;

a random access memory or cache memory 706 (RAM,
acronym for Random Access Memory), comprising
registers adapted to record variables and parameters
created and modified during the execution of the
aforementioned programs; and,

a communication interface 718 adapted to transmit and
to receive data.

In an embodiment, the device 700 furthermore possesses:
a screen 708 making it possible to view data and/or serving

as a graphical interface with the user who will be able to 50

interact with the programs according to the disclosure,
using a keyboard and a mouse 710 or another pointing
device, such as an optical stylus, a touch screen or a
remote control;

40

45

14

a hard disk 135 able to contain the aforementioned pro-
grams “Prog” and data processed or to be processed
according to the disclosure; and,

a memory card reader 714 adapted to receive a memory
card 716 and to read or write thereon data processed or to
be processed according to the disclosure.

The communication bus allows communication and
interoperability between the different elements included in
the device 700 or connected to it. The representation of the
bus is non-limiting and, in particular, the central processing
unit may communicate instructions to any element of the
device 700 directly or by means of another element of the
device 700.

The executable code of each program enabling the pro-
grammable device to implement the methods according to the
disclosure may be stored, for example, on the hard disk 712 or
in read only memory 704.

According to a variant, the memory card 716 can contain
data as well as the executable code of the aforementioned
programs which, once read by the device 700, will be stored
on the hard disk 712.

According to another variant, it will be possible for the
executable code of the programs to be received, at least par-
tially, via the interface 718, in order to be stored in identical
manner to that described previously.

More generally, the program or programs may be loaded
into one of the storage means of the device 700 before being
executed.

The central processing unit 703 will control and direct the
execution of the instructions or portions of software code of
the program or programs according to the disclosure, these
instructions being stored on the hard disk 712 or in the read-
only memory 704 or in the other aforementioned storage
elements. On powering up, the program or programs which
are stored in a non-volatile memory, for example the hard disk
712 or the read only memory 704, are transferred into the
random-access memory 706, which then contains the execut-
able code of the program or programs according to the dis-
closure, as well as registers for storing the variables and
parameters necessary for implementation of the disclosure.

Naturally, to satisty specific needs, a person skilled in the
art will be able to apply modifications in the preceding
description.

APPENDIX

Calcul_[1-3)#islet@hw_group
CC-[1-10]#CC@rack
bullx[10-11]#mds@node

bullx| 12-20]#compute@node
hwm[101-110]#bmc@hwmanager
colddoor|0-5]#coldoor@hwmanager
esw-CU[2-3]-1 #eth@switch
foo[1-5)#bar@soft

Al: Component List Example

Rule Symbolic Comp. Deps Depends

Set name type Filter Action Finder On Comments

Stop nodeOff compute all Nodectrl find_node_ nfsDown Powering off
@node poweroff deps compute and
OR %comp. %comp. nfs nodes
nfs
@node

Start nodeOn compute %name !~ nodectrl find__ Colddoor Power on cold
@node compute poweron nodeon__ Start door before

12 %comp. deps nodes

%name

US 9,298,520 B2

15 16
-continued

Rule Symbolic Comp. Deps Depends

Set name type Filter Action Finder On Comments

Stop colddoorOff colddoor — all Bsm_ power find nodeOff Power off

@hw off %comp. colddoor nodes before a
Off__dep cold door
%comp.

Stop daOff all@da Bash -¢ da_admin find_da__ ioServer Powering off
[[Y%ocomp. poweroff\ deps Off disk arrays
=* %comp. %comp. requires

their clients
to be powered
off first

Stop nfsDown nfsd@soft all ssh Find_ nfs unmount Stopping NFS

%comp. client NFS daemons: take
fete/init.d/nfs %comp. care of clients
stop

Stop unmountNFS unmount all Warning : none none Display a

NFS@soft nfs warning
mounted ! message for
each client

A2: Example of Dependency Rules

<seq>
<par>
<action component_set="cl#unmountNFS @soft” id="1">
echo “WARNING : nfs mounted”;
<faction>
<action component_ set="nfs1#unmountNFS@soft” id="2">
echo “WARNING : nfs mounted”;
<faction>
<action component_ set="nfs2#unmountNFS@soft” id="3">
echo “WARNING : nfs mounted”;
<faction>
< action component__set="“cl#compute@node” id="4">
nodectr] poweroff cl;
<faction>
</par>
<par>
<action component_ set="nfs1#nfsd@soft” id="5">
ssh nfs1 /ete/init.d/nfs stop
<faction>
<action component_ set="nfs2#nfsd @soft” id="6">
ssh nfs2 /ete/init.d/nfs stop
<faction>
</par>
<par>
<action component_ set="nfs1#nfs@node” id="7">
nodectr] poweroff nfs1
<faction>
<action component_ set="nfs2#nfs@node” id="8">
nodectr] poweroff nfs2
<faction>
</par>
<action component_set="“cd0#coldoor@hw” id="9">
nodectrl poweroff ¢d0
</action>
</seq>

A3: Example of an XML File Representing a Sequence of
Instructions
16486773v1:exb

What is claimed is:

1. A computer method for processing at least one command
concerning at least one component of a cluster, the cluster
comprising a plurality of components, the at least one com-
ponent having a dependency link according to the at least one
command with at least one other component of the plurality of
components, the method comprising:

identifying the at least one component of the plurality of

components;

25

30

35

40

45

50

65

identifying at least one dependency rule on the basis of the

at least one command;
generating a dependency chart on the basis of the at least
one identified component, through application of the at
least one dependency rule identified, the dependency
chart comprising vertices representing at least one of the
components and the at least one other component, an
action linked to the at least one command being associ-
ated with the vertices of the dependency chart; and

generating a sequence of instructions on the basis of the
dependency chart.

2. The method of claim 1, wherein an identification func-
tion for identifying components and a dependency rule are
associated with the at least one identified dependency rule,
the method further comprising identifying at least the other
component from the identification function, the dependency
chart being generated from the at least one identified compo-
nent, from the at least one other component, from the at least
one identified dependency rule and from the dependency rule
associated with the at least one identified dependency rule.

3. The method of claim 1, further comprising displaying
information relative to the dependency chart, and generating
the sequence of instructions being carried out in response to a
validation of the information displayed relative to the depen-
dency chart.

4. The method of claim 1, wherein the step of generating a
dependency chart is recursive and comprises:

creating an initial dependency chart comprising at least the

at least one component;

selecting a component in the dependency chart;

identifying at least one component on which the selected

component is dependent in view of a dependency rule;
and

modifying the dependency chart according to the selected

component and the at least one identified component on
which the selected component is dependent in view of a
dependency rule.

5. The method of claim 4, wherein the selecting a compo-
nent in the dependency chart is based on a rule chart, the rule
chart being an ordered representation of the at least one iden-
tified dependency rule and dependency rules directly or indi-
rectly associated with the at least one identified dependency
rule.

6. The method of claim 1, wherein the dependency chart
includes one or more levels and the generating a sequence of

US 9,298,520 B2

17

instructions comprises generating at least one group of
instructions for each level of the one or more levels of the
dependency chart.

7. The method of claim 6, wherein the sequence of instruc-
tions is generated in the form of a file of XML type, a level tag
being associated with each level of the dependency chart and
a group tag being associated with each group of instructions
for each tag of level corresponding to a level for which there
are at least two distinct groups of instructions.

8. The method of claim 1, further comprising executing the
sequence of instructions.

9. The method of claim 8, further comprising displaying
information relative to the sequence of instructions, the
executing the sequence of instructions being carried out in
response to a validation of the information displayed relative
to the sequence of instructions.

10. The method of claim 8, wherein the dependency chart
includes one or more levels and instructions relative to two
distinct levels of the one or more levels of the dependency
chart are executed sequentially and according to which chart
instructions of distinct groups of instructions of the same
level of the dependency chart are executed in parallel.

11. The method of claim 1, wherein the step of generating
a dependency chart is recursive.

12. A non-transitory computer program product encoded
with instructions adapted for directing a computer or proces-
sor to carry out a computer method for processing at least one
command concerning at least one component of a cluster,
when the program is executed on the computer or processor,
the cluster comprising a plurality of components, the at least
one component having a dependency link according to the at
least one command with at least one other component of the
plurality of components, the computer method comprising:

identifying the at least one component of the plurality of

components;

10

20

18

identifying at least one dependency rule on the basis of the

at least one command;
generating a dependency chart on the basis of the at least
one identified component, through application of the at
least one dependency rule identified, the dependency
chart comprising vertices representing at least one of the
components and the at least one other component, an
action linked to the at least one command being associ-
ated with the vertices of the dependency chart; and

generating a sequence of instructions on the basis of the
dependency chart.

13. A computer system comprising a processing unit and a
non-transitory computer program product encoded with
instructions for carrying out a computer method for process-
ing at least one command concerning at least one component
of'a cluster, the instructions to be executed on the processing
unit, the cluster comprising a plurality of components, the at
least one component having a dependency link according to
the atleast one command with at least one other component of
the plurality of components, the computer method compris-
ing:

identifying the at least one component of the plurality of

components;

identifying at least one dependency rule on the basis of the

at least one command;
generating a dependency chart on the basis of the at least
one identified component, through application of the at
least one dependency rule identified, the dependency
chart comprising vertices representing at least one of the
components and the at least one other component, an
action linked to the at least one command being associ-
ated with the vertices of the dependency chart; and

generating a sequence of instructions on the basis of the
dependency chart.

#* #* #* #* #*

